Minggu, 26 Januari 2014

AERODYNAMIC OF AIRPLANE

ILMU AERODYNAMIC



1.  GENERAL
Aerodynamics involves the motion of air and other gases and the forces acting on objects in motion through the air. Put another way, aerodynamics deals with aircraft, wind movement, and atmosphere. A working understanding of aircraft flight must start with a basic knowledge of flight theory as it pertains to conventional aircraft.
2.  BERNOULLI'S THEOREM
At any point in a tube through which a liquid is flowing, the sum of pressure energy, potential energy, and the energy of motion is constant. This theory was discovered by Daniel Bernoulli, a Swiss mathematician and physician. How the theory works is illustrated in figure 2.1. An American engineer, Clemens Herschel, invented the venturi tube and named it in honor of Giovanni Venturi. If the same amount of air that enters the airflow inlet is to leave the airflow outlet, then the velocity of the air must increase while passing the venturi throat. As the velocity increases, the air has less time to push against the sides of the tube, thereby exerting less pressure. Figure 2.1 shows the decrease in pressure gages. Because there is no change in the velocity of the air about the open end of the tube, there is no change in pressure. The differential pressure on the ends of the tubes attached to the venturi throat causes the fluid to move toward the end of the tube that has the least pressure.



3.  NEWTON'S LAWS
Sir Isaac Newton formulated the three laws of motion upon which classical dynamics are based. These laws are directly applicable to modern aerodynamics and are discussed in the subparagraphs that follow.
  a.  The first law. A body at rest remains at rest, or if in motion it continues to move in the same direction with the same speed, unless a force acts upon it. To accelerate an airplane, for example, the engine must deliver a thrust greater than the existing drag or resistance force. For unaccelerated flight, the thrust must be exactly equal to the drag.
  b.  The second law (two parts). (1) When different forces are allowed to act upon moving bodies, the rates at which the momentum changes are proportional to the forces applied. For example, two forces are judged equal if they produce a change of momentum at equal rates. One force is twice as great as another if it changes the momentum at equal rates. One force is twice as great as another if it changes the momentum at twice the rate. (2) The direction of the change in momentum caused by a force is that of the line of action of the force. For example, when a rope operates over a pulley, the force is always combined with one or more auxiliary forces, resulting in the changed direction of the momentum.
  c.  The third law. For every action there is an equal and opposite reaction. For example, a propeller can bite into the air forcing the air rearward and thereby producing a force sufficient to propel the airplane forward.

4.  FORCES ACTING ON AN AIRCRAFT
Figure 2.2 shows the four forces that act on an aircraft in flight; they are weight, lift, thrust, and drag. The weight of the aircraft and its occupants, fuel, and cargo must be lifted against the force of gravity. In designing aircraft the lightest and strongest materials possible are used.


Lift is the force that overcomes gravity. Lift is obtained through the action of air moving past the wings or rotor blades of an aircraft. How to get maximum lift is a major problem in wing and rotor-blade design.
Thrust is the force that puts the aircraft into motion relative to the ground and brings the force of lift into existence. Conventional aircraft are pushed or pulled forward by one or more reciprocating or turbine engine-driven propellers or jet engines.
Drag, the resistance to forward motion, is created by the flow of air over the surface of the aircraft. Figure 2.3 shows how different shaped objects are affected by airflow. The two kinds of drag are induced and moving through the air. While the aircraft is flying, high-pressure air below the wing tends to flow into the low-pressure area above the wing. The two pressures mix at the wing tip and create a vortex (whirlpool). The vortex creates a suction effect at the ends of the wing and causes induced drag that varies directly with the angle of attack. Parasite drag is created by the entire aircraft, excluding induced drag. It is caused by protrusions such as landing gear, rough surfaces, and air striking on the aircraft's frontal surfaces.
Figure 2.3.  How Different Objects are Affected by Airflow.

5.  AIRFOILS
An airfoil is any surface, such as a wing or rotor blade, designed to produce lift when air passes over it. Air passing over the upper surface of a foil produces two-thirds of a foil's lift by creating a lower pressure. One third of the foil's lift is produced by the higher pressure of air on the foil's under surface.
Relative wind is the air flowing opposite and parallel to the direction of airfoil motion. When an aircraft is at rest, relative wind does not exist, only wind created by nature. Relative wind, shown in figure 2.4, is created by the motion of the aircraft traveling through the air using its own power to reach its desired speed.
Figure 2.4.  Relative Wind.

A symmetrical airfoil is designed to have equal cambers on both sides. This kind of airfoil has the characteristics of limiting center-of-pressure travel.
An asymmetrical airfoil is designed to have unequal cambers. This type of airfoil has the characteristic of a rapid movement of center-of-pressure travel. Figure 2.5 shows the contrast between a symmetrical and an asymmetrical airfoil.
Figure 2.5.  Symmetrical and Asymmetrical Airfoils.

6.  ANGLE OF ATTACK
The angle of attack is the angle at which an airfoil passes through the air. This angle is measured between the chord of the airfoil and the relative wind, as shown in figure 2.6. The chord is an imaginary line from the leading edge to the trailing edge of an airfoil. Increasing the angle of attack deflects the airstream and causes an upward pressure on the underside of the airfoil. This in turn increases the speed of the airflow over the topside of the airfoil. As air-flow-speed increases, pressure on the foil's top side is further reduced. The upward pressure on the foil's underside and pressure reduction on the top side combine to furnish lift.
Figure 2.6.  Angle of Attack.

The angle of attack and angle of incidence are measured angles.
Angle of incidence (fixed-wing aircraft) is the angle between the airfoil chord line and the longitudinal axis or other selected reference plane of the aircraft.
Angle of incidence (rotary-wing aircraft) is the angle between the chord line of a main or tail rotor blade and the plane of rotation (tip path plane). It is usually referred to as the blade pitch angle. For fixed airfoils, such as vertical fins or elevators, the angle of incidence is the angle between the chord line of the airfoil and a selected reference plane of the helicopter.

7.  STALL

As the angle of attack is increased, lift is also increased up to a certain angle. Beyond this angle airflow can no longer follow the contour of the airfoil's upper surface, as shown in the sequences in figure 2.7. After the burble point the airfoil goes full stall.
Figure 2.7.  Stall Angle.

8.  AILERONS AND FLAPS
Figure 2.8 illustrates both ailerons and flaps. The aileron is the surface control mounted on the trailing edge near the wing tip that allows the pilot to change the angle of bank as desired.
The flaps are mounted inboard of the ailerons and are probably the most used lift device in service. They increase the lift capability of the airfoil to the maximum attainable. This means that an aircraft can become or remain airborne at lower speeds with flaps extended. They also permit a shorter ground run on landing when used as airbrakes.
When the flaps are extended, the curvature (camber) of the wing is increased. On a high lift aircraft, the ailerons are interconnected to the flaps. In this arrangement, as the flaps are extended, the ailerons droop to add more lift and better control response at slower speeds. Flaps and ailerons are shown in figure 2.8.
Figure 2.8.  Parts of a Fixed Wing Aircraft

9.  ASPECT RATIO
Paragraph 2-9 Aspect Ratio DELETED
Figure 2.9.  Motion of an Aircraft about its Axes.

10.  STABILITY
For lateral stability, positive dihedral is designed into the wing. In simple terms, this means that the wing tips are higher than the wing roots and the aircraft's center of gravity is below the wing's mean center of pressure. Notice in figure 2.10 that the wing tips for the U-21 and U-6 aircraft are 7� and 2� higher than the wing roots. On the U-21 the tips of the horizontal stabilizer are also higher than the roots. A definition for dihedral then is: the spanwise inclination of a wing or other surface such as a stabilizer relative to the horizontal gives the wing or other surface dihedral. This angle is positive if it is upward and negative if it is downward.
Figure 2.10.  Wing Dihedral.

11.  CANTILEVER WINGS
Figure 2.11 shows a cantilever wing and a noncantilever wing. A cantilever wing has no external supports and its structural strength is derived from its internal design. The advantage of this kind of wing is it eliminates drag caused by wing struts. Its disadvantage is the added weight required to give the wing its strength.
Figure 2.11.  Cantilever and Noncantilever Wings.

12.  BOUNDARY LAYER
Figure 2.12, Boundary Layer Flow, shows laminar and turbulent flow and the transition point in between. The boundary layer is the air close to the aircraft wings' upper surfaces. In the forward portion of the boundary layer, the air flows in layers, or separate sheets, called laminae. These layers slide over one another with little mingling of the air particles. However, behind the leading edge there is a transition point where the layer thickens, the airflow becomes turbulent, and one layer mixes with another. This results in increased drag. To aid in preventing boundary-layer turbulence, fences are installed as shown in figure 2.13.
Figure 2.12.  Boundary Layer Flow.

Figure 2.13.  Wing Fences.

13.  SPEED BRAKES
Figure 2.14 shows an extended speed brake. These brakes are manually or hydraulically operated flaps that project into the airstream. Generally, they extend from the sides of the aircraft. However, they can be located on the bottom centerline of the fuselage or on the wings' upper surfaces. The purpose of speed brakes is to retard an aircraft's speed. Such brakes are generally used on aerodynamically clean aircraft such as jets.
Figure 2.14.  Speed Brakes.

14.  EMPENNAGE GROUP
The tail section of an aircraft consists of the horizontal stabilizer and elevator, vertical stabilizer, and rudder as shown in 
The horizontal stabilizer gives the pilot control about the aircraft's lateral (pitch) axis. Some aircraft have a flying tail in which there is no elevator, only one large movable surface called a stabilizer.
The vertical stabilizer acts the same as a keel surface on a boat, and it is needed for adequate directional stability. The rudder is also used for the same purpose as a rudder on a boat and it controls the aircraft around its vertical (yaw) axis.

15.  SUMMARY
Daniel Bernoulli, born 1700, discovered the principle bearing his name. Giovanni Venturi, in 1822, noted the effects of constricting a passage through which fluid flowed. The Venturi tube was invented by Clemens Hershel, an American engineer. He named it in honor of G. B. Venturi. Newton's three laws on force and motion are applicable to aerodynamics.
The four forces acting on an aircraft are weight, lift, thrust, and drag. Flight becomes possible when lift overcomes weight and thrust overcomes drag. The two kinds of airfoils used on Army aircraft are symmetrical and asymmetrical. An airfoil uses low-pressure air on top of the wing and high-pressure air under the wing to produce lift. When the wing's angle of attack is increased, the deflection of the airstream over the wing's upper surface creates more lift. However, if the angle of attack is too great the airstream breaks away from the upper surface and burbles. At this point, the aircraft can stall.
Ailerons control the aircraft about its bank or roll (longitudinal) axis. Flaps are used to increase the lift capability of a wing and are used mostly in landing and takeoff.
A true cantilever wing derives its strength from internal wing-design. The boundary layer is that air closest to the surface of an aircraft's wings, and flows in layers called laminae.

Sejarah Penerbangan Dunia

Pemikiran manusia untuk bisa mengangkasa telah berlangsung sejak sejarah peradaban mereka dimulai. Impian itu telah tumbuh dan mengisi benak mereka, bahkan jauh sebelum Wright bersaudara lahir. Sejak legenda Yunani Daedelus dan Icarus hingga mewujudkan Stasiun luar Angkasa MIR, manusia terus berdiskusi, menganalisa, berupaya, dan akhirnya melakukan pencapaian penerbangan. Kendati teknologi terus berkembang secara dramatik, impian untuk terus berkembang tak pernah berhenti. Meski mungkin lebih terkenal karena karya cipta seninya, Leonardo da Vinci adalah orang pertama yang melakukan studi ilmiah mengenai mekanika penerbangan. Pada akhir abad ke-15, ia membuat sketsa sebuah mesin terbang yang dinamai Ornithoper.
Dalam sketsa itu, Ornithopter itu memiliki sayap yang akan mengepak-epak ketika "pilot" melepaskan kakinya. Toh, Ornithopopter tak pernah terwujud secara fisik. Meski, walaupun Davinci melakukanya, mesin terbangnya tak mungkin bisa bekerja, sebab manusia manusia tak mungkin bisa mengangkat bebanya sendiri dengan sekedar mengepak-ngepakkan sayap yang ditempel ditubuhnya.
Mesin terbang pertama pertama yang bisa dibuat adalah sebuah balon berisi udara panas Montgolfier bersaudara dari perancis pada 1782. Balon mereka bisa mengangkasa setelah api memanaskan udara didalam balon tersebut.Seekor bebek, kambing, dan tikus kecil menjadi penumpangpertama. Namun, pada november 1783,keduanya berhasil terbang diatas Paris selama 25 menit dan menjadi manusia pertama yang melakukan penerbangan bebas.
Satu catatan penting, manusia memang berhasil mengangkasa, tetapi balon membuat manusia kesulitan mengarahkan penerbangan. Balon yang bisa dikendalikan pertama kali dibuat oleh henri giffard pada 1852. Bentuknya seperti cerutu dan menggunakan hidrogen untuk bisa mengangkasa. Balon ini juga memiliki mesin yang menggerakkan baling-baling serta menggunakan kemudi untuk mengontrol arah. Balon udara LaFranc di buat pada 1884 oleh Charles Renard dan A.C Krebs, adalah udara pertama yang bisa digerakkan ke semua arah tanpa bergantung pada arah angin. Count ferdinand von Zeppelin dari jerman menyempurnakan kekakuan pengendalian balon udara itu pada awal abad ke-20.
Selama perang dunia I, Zeppelins digunakan sebagai pembawa bom yang dijatuhkan diatas kota London. Pasca perang, Zepellins sukses menjadi pengangkut penumpang komersial. Namun hindenburg-Zeppelins paling besar dan paling terkenal yang pernah dibuat meledak pada 6 mei 1937, saat mencoba di New Jersey. Tiga puluh enam dari 97 penumpang didalamnya tewas. Itulah akhir dari penerbangan balon udara komersial.
Ketika Giffard, Zeppelin, dan rekan-rekan mereka melakukan penelitian balon udara, seseorang lebih berkonsentrasi pada pesawat bersayap. Sir george Cayley, kerap disebut sebagai Bapak Aerodinamika Modern, menemukan kaidah penerbangan yang menjadi awal pengembangan pesawat terbang sesungguhnya. Ia mengaplikasikan penelitianya dengan membuat pesawat tanpa mesin pada pertengahan abad ke-19.
Berbagai karya tulis yang dibuat Cayley dilanjutkan oleh seorang jerman, Otto Lilienthal. Ia berhasil membuat 2500 penerbangan dengan glider (pesawat tak bermesin, yang membuktikan nilai penemuannya. Toh pencapaian menthal masih belum cukup melawan terpaan angin. Ia tewas bersama glidernya pada tahun 1896. Adalah Orville dan Wilbur dengan penerbangan bersejarah di Kitty Hawk, Membuktikan mereka mampu menjawab tantangan sebelumnya. Penerbangan mereka menunjukkan "benda" yang mereka tumpangi mampu menjawab dua kendala utama sebuah penerbangan, yakni sumber tenaga yang cukup dan efektif mengontrol arah. Pada 17 desember 1903, Wright bersaudara mampu mewujudkan penerbangan pertama yang terkontrol, berawak, bertenaga, dan lebih ringan daripada udara. Penerbangan pertama ini berlangsung selama 12 detik dan melaju sejauh 120 kaki.
Perkembangan pesat. Namun, dampak keberhasilan meeka baru benar-benar terasa pada 1908, tatkala keduanya mendemonstrasikan pencapaian mereka di AS dan Perancis. Setahun kerikutnya, benar-benar berlangsung penerbangan bersejarah ketika Louis Bleriot menerbangkan pesawat terbang mono menyebrangi Selat Inggris dari Perancis ke Inggris. Ini menjadikan Bleriot orang pertama yang menyebrangi lautan atau dari satu negara ke negara lain dengan pesawat terbang.
Juga di Perancis, Elise Deroche dikenal sebagai "La Baronne De La Roche" menjadi wanita pertama yang mendapatkan lisensi sebagai pilot. Pada tahun yang sama pesawat mmiliter AS pertama dibuat oleh Wright bersaudara. Dua tahu kemudian, Glenn Curtiss, bapak penerbangan angkatan laut berhasil melakukan penerbangan lautan pertamanya di San Diego. Perang dunia I , kenyataanya, turut mempercepat berbagai kemajuan dalam menggunakan teknologi untuk penerbangan. Diawal perang, pesawat terbang digunakan untuk observasi, sementara dimasa perang berkecamuk dengan tambahan mesin peluru, pesawat terbang menjadi senjata efektif selama perang. Inovasi dalam rancangan juga semakin membuat pesawat terbang lebih besar, lebih cepat dan mampu membawa bom. Pada 1918, AS menjadi negara pertama yang menawarkan layanan pos udara yang terjadwal tetap. Juga rute penerbangan tetap antara Washingthon D.C dan New York.
Pada 1932 Amelia Earhart juga mencapai status legendaris. Ia menjadi pilot wanita pertama yang menyebrangi atlantik seorang diri. Namun, orang lebih mengenangnya setelah ia tidak pernah muncul kembali pada penerbangan bersama navigatornya pada 1937. Earhart terbang dari miami dengan rencana mengelilingi dunia. Namun setelah suara terakhirnya diterima dilautan Pasifik, setelah itu ia dan navigatornya tak pernah kembali. Beragam teori di kembangkan namun hingga kini belum terungkap apa yang sesungguhnya terjadi.
Seiring penerbangan terakhir Earhart, seseorang bernama Igor Sikorsky mengenbangkan pesawat jenis lainya yang sekarang dikenal dengan helikopter. Ia menyempurnakan helikopter dengan rotor tunggal pada 1930-an dan pada dekade setelahnya helikopter semakin disempurnakan bentuk dan kemampuanya. Saat ini helikopter banyak digunakan untuk kepentingan militer, penyelamatan darurat, dan tujuan komersial.

Rabu, 22 Januari 2014

Aerofoil Pada Pesawat Terbang

Aerofoil atau Airfoil sering dikaitkan dengan aerodinamik dan apabila disebut tentang aerofoil perkara pertama yang kita bayangkan adalah sayap kapal terbang. Namun begitu, aerofoil bukan nya bermaksud aerodinamik atau sayap kapal terbang.

Aerofoil
 atau Airfoil bermaksud satu permukaan yang bergarisan arus (streamline) yang menyebabkan udara mengalir disekitar permukaan nya menghasilkan perbezaan tekanan dan tegasan ricih, lalu menghasilkan daya angkat dan daya seretan.


Definisi Aerofoil atau Lelayang Angin dalam penerbangan

Dalam erti kata lain, aerofoil bertujuan untuk menghasilkan daya angkat yang banyak serta mengurangkan daya geseran atau seretan.
Buat pengetahuan anda, aerofoil boleh juga dikatakan sebagai ‘bentuk’ yang dicipta bagi menghasilkan daya angkat yang tinggi. Aerofoil bagi sayap kapal terbang terbahagi kepada dua iaitu permukaan atas dan permukaan bawah. Permukaan atas aerofoil lebih panjang daripada permukaan bawah. Selain itu permukaan atas aerofoil selalunya berbentuk melengkung atau separuh bulat atau juga disebut sebagaikamber (camber).

Konsep Aerofoil

Setiap udara atau angin yang melepasi aerofoil akan terpisah lalu melepasi bucuhadapan (leading edge) dan akhirya bercantum di bucu belakang (trailing edge). Oleh itu angin di bahagian permukaan atas aerofoil bergerak lebih laju daripada permukaan bawah aerofoil disebabkan permukaan atas aerofoil tadi yangberkamber (camber) atau melengkung dan lebih panjang. Angin yang terpisah tadi akan bercantum semula dibahagian hujung belakang aerofoil yang tirus ini.
Angin di atas permukaan aerofoil ini lebih laju daripada angin dipermukaan bawah  aerofoil. Oleh itu, tekanan udara di atas sayap kapal terbang lebih rendah dan disebabkan angin dibawah permukaan aerofoil bergerak perlahan, tekanan di bawah sayap amat tinggi. Kesimpulanya, perbezaan tekanan yang tinggi dibawah permukaan sayap menghasilkan daya angkat (lift) atau boleh juga disebut daya angkat terhasil disebabkan tekanan udara di permukaan sayap yang berbeza.
Sila baca artikel tentang Prinsip Bernoulli » Bagaimana Kapal Terbang Boleh Terbang
Adakah aerofoil ini sayap? Jawapan nya tidak.  Aerofoil ialah suatu bentuk 2D yang menghasilkan daya angkat. Disebabkan sayap pesawat yang Wing made up from Aerofoilpanjang, sayap pesawat terbang diperbuat daripada aerofoil yang berlapis-lapis sehingga menghasilkan sayap yang berbentuk 3D. Oleh itu, aerofoil dipanggil sebagaiseksyen sayap (wingssection) dan sayap diperbuat daripada aerofoil.

Jenis-jenis Aerofoil

Jenis-jenis Aerofoil

1) Asymmetrical Aerofoil atau Aerofoil Tidak Bersemetri
Ini adalah aerofoil yang biasa digunakan di semua sayap kapal terbang komersial. Asymmetrical aerofoil ialah aerofoil yang diatas nya ada permukaanmelengkung (curvature) dan dibawah nya ialah rata.
2) Symmetrical Aerofoil atau Aerofoil Bersemetri
Aerofoil yang tidak mempunyai kamber (zero camber) dan aerofoil ini digunakan untuk kapal terbang akrobatik, missil, sayap jet pejuang dan bilah–bilah rotor helikopter disebabkan bentuk melengkung (camber) aerofoil di kedua-dua permukaan nya sama. Aerofoil ini selalunya dipasang pada kapal terbang bersayap tengah (middle wings aircraft).
Untuk penerangan lebih lanjut mengenai jenis-jenis sayap kapal terbang dan aerofoil bersemetri:
Jenis-jenis aerofoil dan bentuk aerofoil bergantung kepada kegunaan dan kelajuan pesawat itu sendiri. Aerofoil untuk kapal terbang yang berkelajuan subsonic, super sonic dan transonic berbeza di antara satu sama lain. Namun jenis yang utama ialah Asymmetrical Aerofoil dan Symmetrical Aerofoil.
Aerofoil juga terdapat pada fiuslaj, sayap, kawalan permukaan dan bahagian kapal terbang yang membantu dalam menghasilkan daya angkat seperti spoiler, slats dan tab. Anda boleh lihat artikel ini yang berkait rapat dengan konsep aerofoil dan bagaimana kapal terbang boleh terbang.

Konsep Aerofoil Dalam Kejuruteraan Automotif

Konsep Aerofoil ini diguna pakai dan diaplikasikan dalam bidang automotif iaitu kereta paling laju didunia, jentera F1. Aerofoil ini dipasang pada bahagian belakang iaitu pada spoiler belakang dan juga spoiler hadapan atau muncung. Namun aerofoil ini dipasang secara terbalik bagi menghasilkan daya tekanan ke bawah supaya kereta F1 tadi tidak terbang dan terbalik serta memberi kestabilan ketika berada diselekoh.

Aerofoil F1Kesimpulan

Aerofoil ini sudah wujud sebelum manusia menciptanya. Aerofoil ini berada pada sayap burung. Jadi manusia mengambil kejadian tuhan yang menakjubkan ini dan menukarkan nya kepada sebuah teknologi kejuruteraan yang tinggi.

Dalam penerbangan, aerofoil sangat lah penting sehingga wujud nya aerofoil designer yang mereka dan mengkaji bahagian aerofoil ini sahaja. Skop pekerjaan dalam bidang penerbangan amatlah luas sekiranya anda pandai mencarinya dan kejuruteraan penerbangan juga diaplikasikan pada seluruh teknologi dan kejuruteraan di dunia.